

Analysis of ULSD & Gasoline

EDXRF APPLICATION NOTE #1272 REV5

- Model NEX QC+
- X-ray tube 4 W Ag-anode
- Detector
 SDD
- Sample Type Diesel and isooctane to simulate gasoline
- Film
 Polypropylene 4 μm (diesel)
 Ultralene[®] 4 μm (gasoline)
- Analysis Time
 300 sec
- Environment Helium
- Sample Ring Single Position 32 mm

SCOPE

The analysis of sulfur in ULSD (ultra-low sulfur diesel) is demonstrated, as well as the measurement of ultra-low sulfur in gasoline.

BACKGROUND

Regulations around the world have limited the amount of sulfur in various fuels oils with particular attention to diesel fuel. For many years, road diesel has been limited to a maximum sulfur concentration between 10 – 15 ppm, depending on the global region. Now, these limits are expanded to all diesel fuel, including use in large engines and off-road diesel engines.

SAMPLE PREPARATION

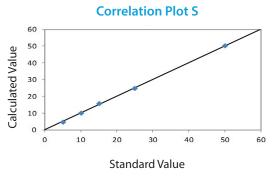
To measure a sample, gently shake the sample bottle, allow bubbles to settle, and fill a 32 mm XRF sample cup with 4.0 g of sample. For ultra-low sulfur measurements, make a fresh cup, prepare a fresh sample and measure immediately after the sample is prepared. Remove sample from analysis chamber immediately after measurement completes. All samples must be homogeneous and stable.

ULTRA-LOW SULFUR HIGHWAY DIESEL FUEL (15 ppm Sulfur Maximum)

Required for use in all model year 2007 and later highway diesel vehicles and engines.

Recommended for use in all diesel vehicles and engines.

Ultralene is a registered trademark of Metuchen Scientific, Inc. DBA Spex CertiPrep Corporation.



DIESEL

CALIBRATION

Empirical calibration was built using a suite of 6 certified diesel calibration standards.

Element: S Units: ppm	RMS Deviation: 0.3 Correlation: 0.9996		
Sample I.D.	Standard Value	Calculated Value	
STD 1	5.0	4.7	
STD 2	10.0	10.1	
STD 3	15.0	15.5	
STD 5	25.0	24.7	
STD 6	50.0	50.0	

PRECISION

Instrument repeatability (precision) is determined by ten repeat analyses of a sample in static position using a 300 sec analysis time.

Element: S Units: ppm							
Sample	Sample Standard Value Aver		Std. Dev	% Relative			
STD 2	10.0	10.2	0.48	4.8			
STD 6	50.0	50.9	0.50	1.0			

DETECTION LIMITS

Ten repeat analyses of a blank diesel sample containing no sulfur are taken with the sample in static position and the standard deviation is determined. The lower limit of detection (LLD) is then defined as three times the standard deviation.

Atmosphere	LLD	Analysis Time
Helium	1.3 ppm	300 sec
Helium	0.9 ppm	600 sec
Air	3.0 ppm	300 sec
Air	2.0 ppm	600 sec

LLDs shown are typical and may differ depending on measurement time used and the overall elemental composition of the sample being tested.

Note: 1 ppm = 1 mg/kg

GASOLINE

CALIBRATION

Empirical calibration was built using a suite of 7 certified isooctane calibration standards to simulate gasoline.

						Correl	ation	Plot S		
Element: S Units: ppm		RMS Deviation: 0.32 Correlation: 0.99958	60 90 50						~	
Sample I.D.	Standard Value	Calculated Value	nlev 40					/		
STD 1	5.0	5.1					/			
STD 2	10.0	10.4	20 sulated			1				
STD 3	15.0	14.5	<u> </u>							
STD 4	20.0	19.8								
STD 5	25.0	25.1	0	0	10	20	30	40	50	_
STD 6	50.0	50.1				Stan	dard V	alue		
						0.001				

PRECISION

Instrument repeatability (precision) is determined by ten repeat analyses of a sample in static position using a 300 sec analysis time.

Element: S Units: ppm								
Sample	Standard Value	Average Value	Std. Dev	% Relative				
STD 2	10.0	9.71	0.20	2.0%				
STD 5	50.0	50.2	0.47	0.9%				

DETECTION LIMITS

Ten repeat analyses of a blank isooctane sample containing no sulfur are taken with the sample in static position and the standard deviation is determined. The lower limit of detection (LLD) is then defined as three times the standard deviation.

Atmosphere	LLD	Analysis Time
Helium	0.7 ppm	300 sec
Helium	0.5 ppm	600 sec
Air	1.2 ppm	300 sec
Air	0.9 ppm	600 sec

LLDs shown are typical and may differ depending on measurement time used and the overall elemental composition of the sample being tested.

Note: 1 ppm = 1 mg/kg

EDXRF APPLICATION NOTE #1272 REV5

INTERNATIONAL STANDARD TEST METHODS

The Rigaku NEX QC+ complies with ISO 13032 for the measurement of ultralow sulfur between 8 – 50 mg/kg in diesel fuels and gasoline. NEX QC+ also complies with the following ASTM and international standard test methods for the measurement of sulfur up to 5% in various petroleum oils and fuels.

ASTM D4294	ISO 20847	ISO 8754	IP 496	IP 336	JIS K 2541-4
16 ppm - 5%	30 - 500 mg/kg	100 mg/kg - 5%	100 mg/kg - 5%	100 mg/kg - 5%	0.01 - 5%

CONCLUSION

The results shown here indicate the Rigaku NEX QC+ EDXRF analyzer gives excellent performance for the measurement of ULSD and ultra-low sulfur gasoline in accordance with ISO 13032. he versatility of the NEX QC+ also makes it an ideal tool for the measurement of many other elements and oil matrices throughout the petroleum industry.

Copyright © 2022 — Rigaku Corporation and its Global Subsidiaries. All rights reserved.